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a b s t r a c t

Transmission of electric energy through an elastic hollow cylinder by acoustic waves is

investigated using the linear theories of piezoelectricity and elasticity. The elastic

cylinder is between two perfectly bonded piezoelectric layers of piezoelectric ceramics

with radial polarization. Power transmission is achieved through the electrical

which is validated by comparison with a solution from the state space method (SSM).

Numerical results are presented for the transmitted voltage, power, efficiency, input

admittance, and the radial distributions of displacement and stress. The effects of the

load impedance and driving frequency are examined.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

There has been recent interest in periodically recharging batteries to power electronic devices operating in a sealed
armor or other hazardous environments into which the physical access is prohibited. For instance, to ensure the reliability
and performance of nuclear stockpiles, there have been proposals that piezoelectric transducers are used to generate
acoustic waves propagating through a sealed armor for transmitting a small amount of power to the electronic devices
inside the armor. The possibility of transmitting a certain amount of energy through an elastic wall was explored by
theoretical and experimental studies in some recent articles [1–9]. The procedure involves the generation and propagation
of acoustic waves, and energy harvesting from the waves using piezoelectric transducers. Once the acoustic wave energy is
harvested into electrical energy, batteries can be charged through circuit design [10–13]. The feasibility of this power
transmission technique was demonstrated experimentally with 110 W power at 88% efficiency [4].

For plate piezoelectric transducers, electromechanical energy conversion can be achieved through thickness-stretch
vibrations or torsional vibrations [14]. As for cylindrical piezoelectric transducers, the conversion is attainable through
axial thickness-shear motion with axial poling and radial electric fields [15], or through radial and circumferential
expansion with circumferential poling [16]. Kim and Lee [17] investigate the radial vibration of a single-layered
piezoelectric cylindrical transducer with radial poling. They obtained analytical results in terms of Bessel functions and
verified the results using finite element analysis. Bessel functions were also used by Lin [18] to study the radial vibration
characteristics of a cylindrical ring with an inner metal layer and an outer piezoelectric ceramic layer poled in the radial
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Nomenclature

a, b, c, d radii of the cylinder
cij elastic constants
Dr radial electric displacement
eij piezoelectric constants
e11 dielectric constant
E Young’s modulus
j electric potential
Z transmission efficiency
I1, I2 input and output currents
k wavenumber

n Poisson’s ratio
P1, P2 input and output powers
Q1, Q2 input and output charges
r radial coordinate
r mass density
Tr ; Ty radial and circumferential normal stresses
ur radial displacement
v wave speed
V1, V2 input and output voltages
o circular frequency
Z load impedance
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direction. In his work, the relations among the resonance frequency, the anti-resonance frequency, the effective
electromechanical coupling coefficient, and the geometrical dimensions were investigated. The numerical results were
validated by comparison with finite element method and experimental results.

Recently, Yang et al. [8,9] reported theoretical analyses on the electric energy transmission through a hollow cylinder
with piezoelectric rings [8] or finite patches [9] on the inner and outer surfaces. The piezoelectric layers were poled in the
axial direction, and the structures were driven into thickness-shear vibrations. A natural variation of the structure in Refs.
[8,9] is to use radially polarized circular cylindrical ceramic transducers to excite thickness-stretch modes. The axially
poled cylindrical shells in Refs. [8,9] require different electrodes for poling and operating. To create axial poling in a circular
cylindrical shell, a relatively high voltage is needed between the two end faces of the shell. In comparison, radially
polarized cylindrical ceramic shells use the same electrodes for poling and operating [17,18], and a relatively low voltage
across the relatively small shell thickness is needed for poling. Therefore, radially polarized ceramic shell transducers have
advantages in their manufacturing.

In this paper, it is proposed to use circular cylindrical ceramic transducers with radial polarization for power
transmission through an elastic wall. In this configuration, under the driving electric field in the radial direction, thickness-
stretch motion is produced through e11. One advantage of this structure and material orientation is that the same electrodes
used in poling the material can also be used for device operation. An exact solution from the linear theory of piezoelasticity
[19] is obtained in the form of Bessel functions. The solution is validated by comparing numerical results to those obtained
using the well-established state space method (SSM) [19–21] based on the theory of piezoelasticity. Various quantities of
basic design interest such as output voltage and current, input admittance, efficiency, and mechanical fields are calculated
and their dependence on the driving frequency and load impedance is examined.
2. Basic equations

Consider a three-layered, hollow cylinder whose cross-section is shown in Fig. 1. The middle layer ðbprpcÞ represents
an elastic wall which is made of some isotropic metal. The inner layer ðaprpbÞ and the outer layer ðcprpdÞ are
piezoelectric transducers made of ceramics poled in the radial direction. Any two adjacent layers are assumed perfectly
bonded to each other.
I1

Z

I2

r

d

θ

Poling direction 

Piezoelectric layer

Metal core layer

a
b

� = V1

� = 0

� = 0

� = V2

c

Fig. 1. Sketch of a power transmission system composed of piezoelectric hollow cylinder.
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The x3 axis is determined from the x1 and x2 axes by the right-hand rule. The cylinder is infinite in the x3 direction.
A cylindrical coordinate system is defined such that x1 ¼ r cos y, x2 ¼ r sin y, and x3 ¼ z. The unit vectors of the polar
coordinate system fer ; ey; ezg are ordered as fe1;e2; e3g so that the radial poling is locally along e1. The inner and outer faces
of the composite shell at r ¼ a and d are traction-free. The surfaces of the piezoelectric layers at r ¼ a, b, c and d are all
electroded. The elastic metal wall is grounded as a reference for the electric potential. A prescribed, driving voltage V1 is
applied across the electrodes at r ¼ c and d. Due to the particular material orientation, the shell is driven into radial or
thickness-stretch vibration, and an output voltage V2 can be picked up across the electrodes at r ¼ a and b, which are joined
by a load circuit whose impedance is Z in time-harmonic motions. The structure is in plane-strain motions with uz ¼ u3 ¼ 0
and q=qz ¼ 0. For an infinite cylinder the plane strain motion is exact. In real applications, when the length of a cylinder is
much larger than its radial dimension, the end effects in the cylinder can be neglected and the problem is approximately
plane-strain. For cylinders that are not very long, the end effects need to be considered and it becomes a much more
challenging problem. In addition to the plain-strain motions, we have axisymmetry with uy ¼ u2 ¼ 0 and q=qy ¼ 0. In this
case, for the piezoelectric layers, the nonzero stress and electric displacement components are given by the following
constitutive relations [19]:

Tr ¼ T1 ¼ c11
qur

qr
þ c12

ur

r
þ e11

qj
qr

,

Ty ¼ T2 ¼ c12
qur

qr
þ c22

ur

r
þ e12

qj
qr

,

Dr ¼ D1 ¼ e11
qur

qr
þ e12

ur

r
� �11

qj
qr

, (1)

where ur ¼ u1 ¼ urðr; tÞ. The relevant equations of motion and the charge equation of electrostatics (Gauss) are

qTr

qr
þ

1

r
ðTr � TyÞ ¼ r q

2ur

qt2
, (2)

1

r

q
qr
ðrDrÞ ¼ 0. (3)

Eq. (3) can be integrated to give

Dr ¼
A3

r
, (4)

where A3 is an integral constant.
For the isotropic elastic shell, the equation of motion is the same as Eq. (2) and the constitutive relations can be obtained

from the first two of Eq. (1) by setting the piezoelectric constants to zero. For isotropic materials, cij in Eq. (1) can be
determined by the Young’s modulus E and the Poisson’s ratio n according to the following relations:

cm11 ¼ cm22 ¼
Eð1� nÞ

ð1þ nÞð1� 2nÞ ; cm12 ¼
En

ð1þ nÞð1� 2nÞ . (5)

To obtain the input and output powers, it is necessary to determine the charges and currents on the electrodes. Consider
a unit length in the x3 direction. For the input electrode at r ¼ d, the charge and current are

Q1 ¼

Z 2p

0
ð�Drjr¼ddÞdy,

I1 ¼
_Q1, (6)

where a superimposed dot represents the derivative with respective to time t. Similarly, for the output electrode at r ¼ a,
the charge and current are

Q2 ¼

Z 2p

0
jDr jr¼aa dy,

I2 ¼ �
_Q2. (7)

For harmonic motions with a driving circular frequency o, we use the usual complex notation:

ður ;j;sr ;Dr ;V1; I1;Q1;V2; I2;Q2Þ ¼ Refðūr ; j̄; s̄r ; D̄r ; V̄1; Ī1; Q̄1; V̄2; Ī2; Q̄2Þ expðiotÞg, (8)

where i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit. Substituting Eq. (4) into Eqs. (6) and (7) results in

Ī1 ¼ �i2poAð3Þ3 ; Ī2 ¼ �i2poAð1Þ3 , (9)
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where, to distinguish quantities of different layers, the superscripts (1), (2) and (3) are used for the inner, middle and outer
layers, respectively. For the output circuit, we have the following equation:

V̄2 ¼ Ī2Z. (10)

Then, the input and output powers are given by

P1 ¼
1
4ðĪ1V̄

�

1 þ Ī
�

1V̄1Þ,

P2 ¼
1
4ðĪ2V̄

�

2 þ Ī
�

2V̄2Þ ¼
1
4ðĪ2 Ī

�

2Z� þ Ī
�

2 Ī2ZÞ ¼ 1
4Ī2 Ī
�

2ðZ
� þ ZÞ ¼ 1

2jĪ2j
2RefZg, (11)

where an asterisk represents complex conjugate. Consequently, the transmission efficiency is defined as

Z ¼ P2

P1
. (12)

3. Exact solution

Substituting Eq. (4) into the third of Eq. (1) gives

qj
qr
¼

e12

�11

ur

r
þ

e11

�11

qur

qr
�

A3

�11

1

r
, (13)

with which the stress components in Eq. (1) can be written as

Tr ¼ c1
qur

qr
þ c2

ur

r
�

e11

�11

A3

r
,

Ty ¼ c2
qur

qr
þ c3

ur

r
�

e12

�11

A3

r
, (14)

where c1 ¼ c11 þ e2
11=�11, c2 ¼ c12 þ e12e11=�11, and c3 ¼ c22 þ e2

12=�11. Substitution of Eq. (14) into Eq. (2) leads to

q2ūr

qr2
þ

1

r

qūr

qr
þ k2

�
a2

r2

 !
ūr ¼ �

e12

c1�11

A3

r2
; ðaprpb; cprpdÞ, (15)

for the piezoelectric layers, and

q2ūr

qr2
þ

1

r

qūr

qr
þ k2

m �
1

r2

� �
ūr ¼ 0; ðbprpcÞ, (16)

for the elastic layer. In Eqs. (15) and (16) we have introduced a2 ¼ c3=c1, k ¼ o=v, and v ¼
ffiffiffiffiffiffiffiffiffiffiffi
c1=r

p
for the piezoelectric

layers, as well as km ¼ o=vm and vm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cm11=rm

p
for the elastic metal layer.

Eqs. (15) and (16) are, respectively, inhomogeneous and homogeneous Bessel’s equations. The general solutions are

ūðiÞr ¼ AðiÞ1 JaðkrÞ þ AðiÞ2 YaðkrÞ þ ūðiÞp ðrÞ; ði ¼ 1;3Þ (17)

ūð2Þr ¼ Að2Þ1 J1ðkmrÞ þ Að2Þ2 Y1ðkmrÞ (18)

where Ja and Ya are Bessel functions of the first and second kinds, respectively, AðiÞ1 and AðiÞ2 ði ¼ 1;2;3Þ are undetermined
constants, and ūp is the particular solution for the piezoelectric layers given by

ūðiÞp ¼ �AðiÞ3

p
2

e12

c1�11
JaðkrÞ

Z r

0

YaðkxÞ
x

dx� YaðkrÞ

Z r

0

JaðkxÞ
x

dx
� �

� �AðiÞ3

e12

c1�11
s�1;aðkrÞ, (19)

where sm;aðxÞ is the Lommel function [22]. In obtaining Eq. (19), the following identity has been used:

JaðkrÞY 0aðkrÞ � J0aðkrÞYaðkrÞ ¼
2

pr
, (20)

in which a prime denotes differentiation with respect to r. The radial stress components in different layers will be needed in
the boundary and continuity conditions. They can be obtained from Eq. (14) as

T̄
ðiÞ
r ¼ AðiÞ1 c1J0aðkrÞ þ c2

1

r
JaðkrÞ

� �
þ AðiÞ2 c1Y 0aðkrÞ þ c2

1

r
YaðkrÞ

� �

�AðiÞ3

e12

c1�11
c1s0�1;aðkrÞ þ c2

1

r
s�1;aðkrÞ

� �
þ

e11

�11

1

r

� �
, (21)
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for the surface piezoelectric layers ði ¼ 1;3Þ, and

T̄
ð2Þ
r ¼ Að2Þ1 cm11J01ðkmrÞ þ cm12

1

r
J1ðkmrÞ

� �
þ Að2Þ2 cm11Y 01ðkmrÞ þ cm12

1

r
Y1ðkmrÞ

� �
(22)

for the elastic layer. The expressions for the electric potentials in the piezoelectric layers can be obtained by integrating
Eq. (13)

j̄ ¼ AðiÞ1

e12

�11

Z r

0

JaðkxÞ
x

dxþ
e11

�11
JaðkrÞ

� �
þ AðiÞ2

e12

�11

Z r

0

YaðkxÞ
x

dxþ
e11

�11
YaðkrÞ

� �

�AðiÞ3

e12

c1�11

e12

�11

Z r

0

s�1;aðkxÞ
x

dxþ
e11

�11
s�1;aðkrÞ

� �
þ

1

�11
ln r

� �
þ AðiÞ4 , (23)

where i ¼ 1;3. AðiÞ4 is another integration constant. There are totally ten constants, AðiÞ1 , AðiÞ2 , AðiÞ3 and AðiÞ4 ði ¼ 1;3Þ, and Að2Þ1 and

Að2Þ2 , to be determined from the boundary and continuity conditions.

The boundary conditions for mechanical field at the inner and outer surfaces are

T̄
ð1Þ
r ðaÞ ¼ T̄

ð3Þ
r ðdÞ ¼ 0, (24)

j̄ð1ÞðaÞ ¼ V̄2 ¼ �i2poAð1Þ3 Z; j̄ð3ÞðdÞ ¼ V̄1, (25)

and that for electric field at the interfaces are

j̄ð1ÞðbÞ ¼ j̄ð3ÞðcÞ ¼ 0. (26)

The continuity conditions for mechanical field at the interfaces are

T̄
ð1Þ
r ðbÞ ¼ T̄

ð2Þ
r ðbÞ; ūð1Þr ðbÞ ¼ ūð2Þr ðbÞ, (27)

T̄
ð2Þ
r ðcÞ ¼ T̄

ð3Þ
r ðcÞ; ūð2Þr ðcÞ ¼ ūð3Þr ðcÞ. (28)

Substituting Eqs. (17) and (21)–(23) into Eqs. (24)–(28) results in a system of inhomogeneous, linear algebraic equations
for the ten unknown constants.

4. Numerical results

As an example, we consider PZT-5H for the polarized ceramics [8]. The relevant material constants are taken from Ref.
[23]: c11 ¼ 117 GPa, c22 ¼ 126 GPa, c12 ¼ 8.14 GPa, e12 ¼ �6.5 C/m2, e11 ¼ 23.3 C/m2, e11 ¼ 1.302�10�8 C/Vm, and r ¼ 7500
kg/m3. For the elastic layer, we consider iron with E ¼ 210 GPa, n ¼ 0.25, and r ¼ 7800 kg/m3 [8]. Damping is introduced by
allowing the relevant elastic constants of the piezoelectric layers to assume complex values, which can represent viscous
damping in the material. In our calculations, c11 is replaced by c11(1+iQ�1) where Q is a large and real number. The rest of
0 2 4 6 8 10 12 14
0

1

2

3

4
(1+i) Z0

1
2

Z =

Z = iZ0

(−1+i) Z0
1
2

Z =

|V
2/

V
1|

�/�0

Fig. 2. Output voltage versus driving frequency for different loads. Present solution: lines. SSM: circles.
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the elastic constants of the piezoelectric layers are treated similarly. For polarized ceramics, the value of Q is of the order of
102 to 103. Here, Q ¼ 103 is used in the calculation. The geometric dimensions are a ¼ 10 mm, b ¼ 20 mm, c ¼ 30 mm, and
d ¼ 40 mm. The following reference frequency and reference load impedance are used as the units for the driving frequency
and the applied load impedance:

o2
0 ¼

p2c11

rðd� aÞ2
; Z0 ¼

1

ioC0
; C0 ¼

�112p
lnðb=aÞ

, (29)

where o0 is related to the fundamental thickness-stretch frequency of the shell when a!1, and C0 is the static
capacitance of the output transducer. In calculating o0, c11 is kept real. It should be pointed out that when the material
constants are complex, a, the order of the Bessel functions, also becomes complex. This causes considerable complication in
numerical calculation. Since the imaginary parts of the complex material constants are much smaller than the real parts, in
the calculation of a only, we ignore the imaginary part of a. It will be shown later by comparison with the SSM that the
error due to treating a as a real number is very small. The formulation using the SSM for the present axisymmetric
deformation of hollow cylinders is given in the appendix where no approximation of dropping the imaginary part of a
complex number is needed.
0 2 4 6 8 10 12 14
0

0.5

1

1.5

(1+i) Z0
1
2

Z =
Z = iZ0

(−1+i) Z0
1
2

Z =

|I 2
/V

1|

�/�0

Fig. 3. Output admittance (in 1=O) versus driving frequency for different loads. Present solution: lines. SSM: circles.
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Fig. 4. Input admittance (in 1=O) versus driving frequency for different loads. Present solution: lines. SSM: circles.
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Figs. 2–4 show, respectively, the normalized output voltage jV̄2j=jV̄1j, output current jĪ2j=jV̄1j (in 1=O), and input

admittance jĪ1j=jV̄1j (in 1=O) versus the driving frequency o. Three different loads are considered, i.e., Z ¼ 1ffiffiffi
2
p ð1þ iÞZ0,

Z ¼ iZ0, and Z ¼ 1ffiffiffi
2
p ð�1þ iÞZ0. The second load is a real number representing a pure resistor. The results from the SSM are

also shown in the figures by circular markers for comparison. The two solutions agree very well. This shows that the error
due to treating a as a real number is indeed very small.

Figs. 2 and 3 show that the output voltage and current attain maxima at resonant frequencies. This indicates that
effective power transmission can happen at resonant frequencies. The global maximal output voltage in the present
structure is about 3.8 times the input voltage. The frequency at which the input admittance assumes minimum is called the
anti-resonant frequency. Unlike the situation of using thickness-shear modes for power transmission [8] wherein the
output voltage attains its global maximum at the first resonance, in the present thickness-stretch mode structure the global
maximum of the output voltage occurs at the third resonance (Fig. 2). In contrast, the global maximum of the output
current occurs at a much higher resonance as shown in Fig. 3. Fig. 2 also shows that, among the three loads plotted, when

Z ¼ 1ffiffiffi
2
p ð1þ iÞZ0 the output voltage is the largest, and when Z ¼ 1ffiffiffi

2
p ð�1þ iÞZ0 the output voltage is the smallest. The output

current and the input admittance are similar. Note in Figs. 2–4 that the resonant frequencies in fact depend on the load
impedance Z. However, this dependence is not strong and cannot be seen in the figures.
0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

(1+i) Z0
1
2

Z =
Z = iZ0

(−1+i) Z0
1
2

Z =

�

�/�0

Fig. 5. Efficiency versus driving frequency for different loads. Present solution: lines. SSM: circles.
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Fig. 6. Output voltage versus load near different resonant frequencies.
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Fig. 5 shows the transmission efficiency Z versus the driving frequency. Again, the results by ignoring the imaginary part
of a are essentially identical to that from the SSM with complete complex elastic constants. Since both the output and input
powers are functions of the driving frequency with sharp peaks, their ratio (efficiency) exhibits a rather complicated
frequency behavior. The efficiency is bounded from above by 1. Among the three loads considered, the efficiency when

Z ¼ 1ffiffiffi
2
p ð�1þ iÞZ0 is higher than that when Z ¼ 1ffiffiffi

2
p ð1þ iÞZ0. The efficiency is nearly zero when the normalized frequency

equals 0.74. Similar behavior is observed when the normalized frequency equals 6.4, 7.6 and 13.4. These frequencies should
be avoided in operation. We note that the efficiency shown in Fig. 5 is higher than the electromechanical coupling
coefficient for polarized ceramics which is defined for static processes and is usually about 70–80%. In resonant
piezoelectric devices like piezoelectric transformers in time-harmonic motions the energy conversion rate is often higher
than the electromechanical coupling coefficient. This high efficiency can only be achieved for a certain range of the load Z.

Fig. 6–8 present jV̄2j=jV̄1j, jĪ2j=jV̄1j and jĪ1j=jV̄1j versus the normalized load Z=iZ0 for frequencies near different
resonances. For these three figures, the load Z is taken as a real number and represents a pure resistor. In the figures oi

represents the case when the driving frequency o is very close to the ith resonance. The output voltage increases from zero
drastically almost in a linear manner (Fig. 6) while the output current decreases sharply (Fig. 7) as the load increases from
zero. For large loads, the output voltage and the input admittance are nearly constant, indicating saturation. Physically, for
0 5 10 15 20
0

0.5
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Z/iZ0
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1|
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Fig. 7. Output admittance (in 1=O) versus load near different resonant frequencies.
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Fig. 8. Input admittance (in 1=O) versus load near different resonant frequencies.
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very large loads, the output electrodes are essentially open, hence the output voltage is saturated and the output current
nearly vanishes.

Efficiency versus load near resonant frequencies is plotted in Fig. 9. The efficiency first increases from zero to a
maximum, and then decreases monotonically as Z=iZ0 increases (here Z is a real number). The efficiency near lower
resonances (o1 to o4) is higher than that near higher resonances (o9 and o10). The presence of a maximal efficiency sets a
clear goal for the optimization of structural design.

Finally, the radial distributions of ūr and T̄r due to a unit input voltage ðjV̄1j ¼ 1Þ are shown in Figs. 10 and 11,

respectively. The results are for Z ¼ 1ffiffiffi
2
p ð1þ iÞZ0, Z ¼ iZ0 and Z ¼ 1ffiffiffi

2
p ð�1þ iÞZ0 near the first and third resonant frequencies,

i.e. o1=o0 ¼ 0:455 and o3=o0 ¼ 2:245. The stresses near the first resonance are in kPa, and those near the third resonance
in 10 kPa. The stress vanishes at the inner and outer surfaces of the cylinder as dictated by the traction-free boundary
conditions in Eq. (24). Although these mechanical fields are not directly related to power transmission performance, they
often need to be considered in design for structural strength. Among the loads considered, both the displacement and the

stress attain maxima for Z ¼ 1ffiffiffi
2
p ð1þ iÞZ0 and minima for Z ¼ 1ffiffiffi

2
p ð�1þ iÞZ0. The displacements for all loads near the first

resonance are larger than their counterparts near the third resonance. However, the trend for the stresses is the opposite.
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Fig. 9. Efficiency versus load near different resonant frequencies.
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The maximal stress for the present example occurs within the armor for the first resonance and within the piezoelectric
layers for the third resonance, rather than close to the interfaces. The location and magnitude of the maximal stress are
shown clearly in Fig. 11, which are of importance in design.

5. Conclusion

An analysis was performed for transmission of energy by acoustic waves through an elastic hollow cylinder using
piezoelectric ceramic transducers with radial poling. An exact solution in the form of Bessel functions was obtained and
validated by comparison with the well-established SSM. Numerical examples were presented to investigate the output
voltage and efficiency. It was found that effective power transmission can happen at a few lower-order resonant
frequencies. For the example analyzed, the highest output voltage occurs at the third resonance. The efficiency can be very
high, close to 1 over a frequency range including the first few resonances.
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Appendix A. State space analysis

The state space formulation for the piezoelectric layers is as follows:
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(A.1)

where T̄r , ūr , j̄ and D̄r are termed the state variables, and ai (i ¼ 1,2,3) depend on material parameters and are defined by

a1 ¼
c2

c1
; a2 ¼

e11c12 � e12c11

c1�11
; a3 ¼ c22 � c12a1 � e12a2. (A.2)
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For the elastic shell, the state equation is obtained by discarding the electric quantities in Eq. (A.1), i.e.,
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ūr
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. (A.3)

Since Eqs. (A.1) and (A.3) have variable coefficients, the approximate laminate model [19–21] is adopted to divide the
cylinder into many thin layers, for each layer the state equation approximately has constant coefficients. The general
solution for each layer is readily obtained by solving the first-order differential equation. With the incorporation of
mechanical continuity conditions and electric potential conditions at the interfaces, a transfer relation between the state
vectors at the lateral surfaces where r ¼ a and r ¼ d is obtained. Based on this relation and the boundary conditions at
lateral surfaces, the unknown state variables at the lateral surfaces are obtained, and, hence the global solution for the
whole cylinder.
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